

Measuring Instruments Selection Guide 2008/2009

Digital Multimeters 2
DC Voltage / Current Sources / Monitors 4
DC Voltage / Current Sources / Calibrators 4
Optical Power Meters 6
Optical Spectrum Analyzer 6
Digital Electrometers 7
Scanner 7

http://www.adcmt.com

ADC CORPORATION

7351A/7351E/7351E+03

51/2-digit

51/2-digit DMM that realizes general-purpose applications, low price and high throughput

- Realizes 51/2-digit DMM with a price of 41/2-digit
- Highest throughput in the class FAST: 140 readings/sec. (Max. display of 19999) MED: 40 readings/sec. (Max. display of 199999)
- High measurement accuracy of 110ppm (2VDC range)
- Wide range of current measurement Three ranges: 200mA, 2000mA, 10A

7451 A

5½-digit **(€**)

High-performance and low-cost DMM optimum for average measurement

- Fast sampling rate: 5,000 times/sec.
- Variable integration time: 100µs to 10s
- Two-channel input for DC voltage measure-
- High-resolution DC current measurement: 10nA resolution
- Data memory: up to 10,000 data
- Full array of trigger functions

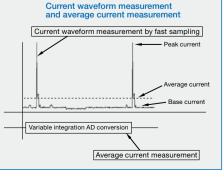
7461A

6½-digit **(€**)

High-performance and low-cost DMM with fast sampling rate

- Fast sampling rate: 20,000 readings/sec.
- Variable integration time: 10 µs to 10s
- Two-channel input for DC voltage measure-
- High-resolution DC current measurement: 1nA resolution
- Data memory: up to 10,000 data
- Full array of trigger functions

	7351A 7351E 7351E+03			7451A	7461A	
Maximum display		199999	319999	1199999		
Sampling rate (readings/sec.)		140max		5,000max	20,000max	
Variable integration		_		✓	✓	
DC voltage		1μV to 1000V		1μV to 1000V	100nV to 1000V	
Accuracy (typical value)		0.011 %/year		0.01 %/year	0.0035 %/year	
DC current		1μA to 10A		10nA to 3A	1nA to 3A	
Resistance		$1m\Omega$ to $200M\Omega$		100μΩ to 300MΩ	100μΩ to 100MΩ	
Four-wire resistance		-		✓	✓	
AC voltage (True RMS)		1μV to 700V	1μV to 700V	100nV to 700V		
AC voltage frequency range		20Hz to 100kHz	20Hz to 300kHz	20Hz to 300kHz		
AC current (True RMS)		1μA to 10A		10nA to 3A	1nA to 3A	
Calculation functions		✓		✓	✓	
Rear input		_		✓	✓	
Interface	USB, GPIB	USB	USB, GPIB	USB, GPIB		
Comparator output	_	_	✓	✓		
External trigger input	✓	_	✓	✓		
Dimensions (W)x(H)x(D)mm	212×88×340					
Weight (kg)	3.4 or less					

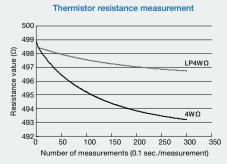

Application

Stand-by current measurement for a mobile phone

With the stand-by current of mobile phones, the peak current flows at a certain interval while standing by, and the constant current flows at other times.

The 7461A and the 7451A are capable of current waveform measurement including the peak current measurement with the fast

measurement at the maximum rate of 20,000 and 5,000 samplings per second, respectively. These models are also capable of accurate average current measurement, by using variable integration time of up to 10 seconds.


Application

Resistance measurement of thermistor by low-power resistance measurement

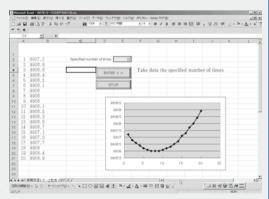
The 7461A and the 7451A are equipped with the low-power resistance measurement function as a standard. This enables measurement with reduced effect from self-heating, even with thermistor and other thermosensitive elements.

When a thermistor is measured with the LP4W Ω function that uti-

lizes the measurement function, the current for measurement would be 100µA, which is 1/10 the normal value $4W\Omega$. Therefore, measurement would be possible with small change in resistance.

5½-digit DMM with built-in twin AD converter that enables two-channel synchronous measurement

- Completely independent two-input, twin-AD converter that creates the new measurement environment
- Double the conventional throughput with synchronous Ach and Bch measurement
- 5½-digit dynamic range for both Ach and Bch
- Wider current measurement range, capable of voltage-temperature parallel measurement


Ach: 10pA-2A Bch: 100µA-10A

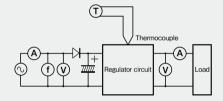
	7352A	/7352E			
	Ach	Bch			
Maximum display	199999	199999			
Sampling rate (times/sec.)	140max	140max			
DC voltage	1μV to 1000V	1μV to 200V			
Accuracy (typical value)	0.0119	%/year			
DC current	10pA to 2A	100 μ A to 10 A			
Resistance	1mΩ to 200MΩ	_			
AC voltage (True RMS)	1μV to 700V	_			
AC voltage Frequency range	20Hz to 100kHz	_			
AC current (True RMS)	1nA to 2A	100 μA to 10A			
Calculation functions	✓	✓			
Rear input temperature		℃ to 1370℃ ℃ to 400℃			
Interface	7352A : USB,GPIB,RS232C 7352E : USB				
External trigger input	7352A∶✓ 7352E∶ —				
Dimensions (W)x(H)x(D)mm	212×88×340				
Weight (kg)	3.7 or less				

Application

USB interface as a standard

Data transfer would be possible easily using the standard USB interface for PC. (USB1.1-compliant) Free software for taking in the measurement data onto Excel sheet is available from our website.

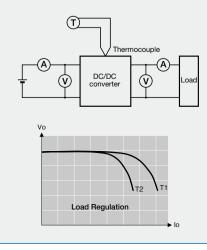
Data collection software of USB


New applications made possible by Twin DMM 7352A/7352E

Application

Testing of power unit

As for the 7352A/7352E, the Ach, Bch and TEMP are completely independent of each other. With two independent AD converters, switching measurement and functional change are unnecessary. Thus, measurement of high throughput would be possible without being affected by effects from between the channels.



Application

Evaluation of DC/DC converter

The 7352A/7352E with two inputs where the channels are completely isolated may evaluate the input and output properties, load variability characteristics and rise in temperatures of a DC/DC converter.

Five types of measurements are possible, namely the input voltage and current with Ach, output voltage and current with Bch and temperature with rear input.

DC Voltage / Current Sources / Monitors

6240A

Cost-effective source/monitor, capable of 5½-digit measurement and 4A pulse generation

- Source measurement range
 Voltage: 0 to ±15V; current: up to ±4A (1A with DC)
- Measurement at 5 1/2-digit and resolution of 10µV/10nA
- Source/sink possible at ±4A at intervals of up to 20ms
- Pulse measurement with the minimum pulse width of 500µs

High performance source/monitor capable of pulse generation and measurement with the minimum pulse width of 50µs

- Wide range of generation and measurement functions Voltage: 0 to ±32V; current: 0 to ±500mA (6241A)
 Voltage: 0 to ±6V; current: 0 to ±5A (6242)
- High source/measurement resolution Source: 10μV/1nA Measurement: 1μV/100pA
- Two-slope linear sweep function
- GPIB/USB interfaces as a standard

		6240A	6241A	6242		
Number of digits for gene	ration	4½-digit				
Output method		Bipolar Bipolar				
	Voltage	±15V/1A	±32V/0.5A	±6V/5A		
Maximum output (high)	- J	100 <i>μ</i> V	10 <i>μ</i> V	10 <i>μ</i> V		
Minimum resolution (low)	Current	±4A/10V(DC: ±1A/15V)	±0.5A/32V	±5A/6V		
		100nA	1nA	1nA		
Number of digits for meas	surement	5½-digit				
Basic accuracy (typical ra	inge)	0.025%	0.02%			
Minimum measurement	Voltage	10 <i>μ</i> V	1μV	1μV		
resolution	Current	10nA	100pA	100pA		
Maximum measurement range of resistance/ minimum resolution		7.5ΜΩ/2μΩ	1.6GΩ/2μΩ	304ΜΩ/0.2μΩ		
Pulse application/ measurement		/				
Minimum pulse width		500μs	50μs			
Interface		GPIB	USB/GPIB			

DC Voltage / Current Sources / Calibrators

6144

Programmable DC voltage/ current source optimum for evaluation of precision circuits and components and calibration of equipment

- ullet Up to 32V/160mA of voltage/ current output
- \bullet High resolution of 1 μ V/100nA steps
- 160-step memory
- High accuracy of 0.03% (voltage) and 0.035% (current)
- Low noise that enhances measurement reliability: 3mV_{P-P}
- All-digit continuous variable sweep function for greater measurement applicability

6161

Highly sensitive and accurate working standard DC voltage: 10nV to 1200V DC current: 1nA to 120mA

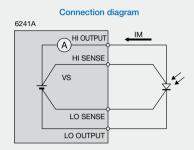
- High resolution of up to 10nV/1nA
- High accuracy guaranteed: ±5ppm/ day, ±25ppm/ 90days
- High output of ±1200V, ±120mA
- 100-step memory
- OPT01 enables the maximum compliance voltage in the 1mA and 10mA range to be changed from ±120V to ±1200V

		6144	6161
Number of digits		4½-digit	6½-digit
	Voltage	±32V/160mA	±1200V/12mA
Maximum output (high)	voitage	1μV	10nV
Minimum resolution (low)	Current	±160mA/28V	±120mA/120V
	Current	100nA	1nA
A (1 : 1)	Voltage	0.03%	0.0025%
Accuracy (typical range)	Current	0.035%	0.0045%
Settling time		50ms	1s
Output noise (typical range)		3mVp-p	3mVp-p
Interface		GPIB / BCD-parallel	GPIB / BCD-parallel

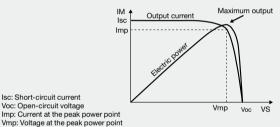
6243/6244

Source/monitor optimum for evaluating electronic circuits (components), with flexible generation and measurement

- Wide range of generation and measurement Voltage: 0 to ±110V; current: 0 to ±2A (6243)
 Voltage: 0 to ±20V; current: 0 to ±10A (6244)
- \bullet Measurement at 5 1/2-digit and resolution of 1µV/100pA (6243) and 1µV/1nA (6244)
- Pulse measurement with the minimum pulse width of 1ms

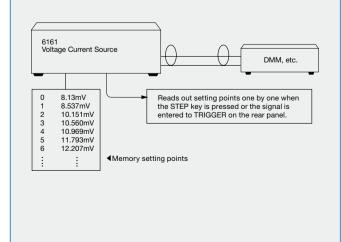

		2212			
		6243	6244		
Number of digits for gene	ration	4½-digit			
Output method		Bipolar			
	Voltage	±110V/0.5A	±20V/4A		
Maximum output (high)	voitage	10 <i>μ</i> V	10 <i>μ</i> V		
Minimum resolution (low)	Current	±2A/32V	±10A/7V		
	Current	1nA	10nA		
Number of digits for meas	surement	5½-digit			
Basic accuracy (typical ra	inge)	0.03%			
Minimum measurement	Voltage	1μV	1μV		
resolution	Current	100pA	1nA		
Pulse application/ measure	rement	✓			
Minimum pulse width		1ms			
External interface		GPIB			

Application


Evaluation of solar cells

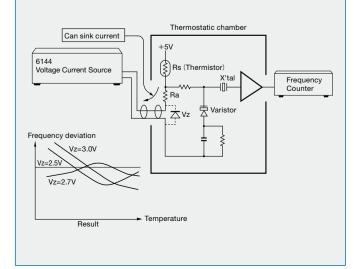
The conversion efficiency of solar cells is affected by duration of bias application. Therefore, measurement by pulse application would be effective for obtaining the true conversion efficiency. Using the pulse sweep function of the 6241A/6242, the I-V curve can be measured at high speed. Furthermore by varying the pulse width, the changes in characteristics caused by the duration of application can be measured easily. Also, the two-slope linear sweep

that enables the step width to be switched during measurement enables measurement in small steps from the vicinity of Vmp to Voc


Light I-V characteristics

Application

Calibration of DMMs and other meters and adjustment of elements and devices


Calibration/adjustment points that are manually set to the memory of the 6161 or the generation conditions such as voltage that are programmed in the built-in memory are sent to DMM with setting generation intervals (step time). When calibrating a measuring instrument, the next step can be taken at the end of every calibration by the remote controller.

Application

Evaluation of X'tal oscillation circuit

The 6144 capable of current sink can evaluate circuits as a reference voltage source to replace a Zener diode. The following diagram shows an application to measure the oscillation frequency temperature characteristics of X'tal and determine the optimum conditions.

Optical Power Meters

These are most suitable optical power meters for R&D and production of LDs, optical pickups, and drivers for optical discs.

You may choose from the three types of mainframes and nine sensors, to suit your needs.

8230E

- Low-priced general-purpose sensors and high power sensors are available
- USB interface

8230

- Wide lineup of sensors are available for each application
- Automated system may be configured easily with USB

8250A

- A desk-top type; equipped with GPIB and USB
- Wide lineup of sensors are available for each application

Optical Sensors

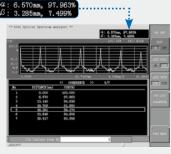
Applicability table for the nine product types of sensors, from low-priced general-purpose ones to those compatible with high power and blu-ray, to suit your needs

			Wavelength/ calibrated wavelength (nm)	Photoreception power/ area	8250A	8230	8230E
0 1	Thin type	82311	390 to 1100/780	to 1100/780		✓	✓
General-purpose sensor	(Option: OPT8230E+11)				_	_	✓
Selisoi	Cylindrical	82321	390 to 1100/780	1nW to 50mW/8.5φ	✓	✓	✓
High payor cancer	Thin type	82313	390 to 1100/650	10nW to 200mW/8.5φ	✓	✓	1
High power sensor	Cylindrical	82323	390 to 1100/650	10nW to 200mW/8.5φ	✓	✓	✓
DI	Thin type	82312	390 to 450/405	10nW to 100mW/10□	✓	✓	
Blue-violet sensor	Cylindrical	82322	390 to 450/405	10nW to 100mW/8.5φ	✓	✓	
Three-wavelength sensor	Thin type	82314A	390 to 900/405	10nW to 100mW/10□	✓	✓	N/A
	Thin-type large- area	82314W	390 to 900/405	10nW to 100mW/18	✓	✓	IN/A
	Cylindrical	82324A	390 to 900/405	10nW to 100mW/8.5φ	✓	✓	

- ★In addition to the calibrated wavelength indicated, calibration with additional wavelengths (405, 650, 780nm) is possible as an option.
- *The wavelenght sensitivity of the 82311 and the 82321 is corrected by using the typical values. Correction by measurement is possible with the 82311 as an option. However, this is not possible with the OPT8230E+11.

Optical Spectrum Analyzer

8341


For high-speed and high-accuracy wavelength measurement of LDs for optical discs

- Method: Fourier spectroscopy with Michaelson interferometer
- Wavelength range: 350 to 1000nm
 Wavelength accuracy: ±0.05nm (standard), ±0.01nm (option)
 Wavelength resolution: 0.05nm (standard), 0.01nm (option)
 Optical input: FC-type connector, GI fiber, sensitivity: -55dBm
- Coherence analysis length: 10.3mm (standard), 41.4mm (option) Resolution: 0.001mm
- Throughput: 2sec. or less (standard), 0.5sec.
- Interface: GPIB, USB, Ethernet
- Dimensions and weight: 424(W) x 132(H) x 500(D) mm, 16kg or less

Application

Coherence measurement of LD for DVD

One of the evaluation items of laser diode for DVD is coherence measurement, in which the ratio between the peak and second peak of interference output is obtained. The 8341 makes the measurement possible at easy one-key operation. Only the data on coherence calculation results may be displayed during spectrum analysis.

Coherence analysis example

Digital Electrometers

8240

For evaluation and testing of semiconductor and electronic components Low-cost type with GPIB interface

- Wide current measurement range: 10fA to 20mA
- High input impedance of voltage measurement: $10^{13}\Omega$ or more
- High-speed voltage measurement with driving guard

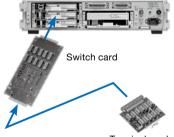
8340A

High-speed and highly accurate measurement for $10^{-14}A$, $3 \times 10^{16}\Omega$ Maximum voltage source of +1000V

- Current measurement: 10fA to 19.999mA
- Resistance measurement: 10Ω to 3 x $10^{16}\Omega$
- High-speed charge and discharge are possible
- High-speed measurement: 100 readings/sec.
- Voltage source: 0 to +1000.0V
- Floating measurement is possible for 1100VDC

		8240	8340A		
Number of digits		4½-digit			
	Voltage	✓	N/A		
Measurement function	Current	✓	✓		
weasurement function	Resistance	N/A	✓		
	Electrical Charge	N/A	N/A		
Voltage/Current measurem	ent resolution	10μV/10fA	−/10fA		
Resistance measurement	Measurement range	_	10Ω to 3×10 ¹⁶ Ω		
Voltage source	Range/maximum current	_	+2.5mV to +1000V/±10mA		
	GPIB/single-wire signal	✓	✓		
Interface	Handler	N/A	✓		
	D/A output/ analog output	N/A / ✓	✓ / N/A		

Scanner


7210

For automatic measurement systems 1µV low-thermal electromotive

0.1pA minute electric current

- Digital signal input/output functions
- 10⁷ times of switching is guaranteed at 1000V/ 5mA
- Increase is possible up to five slots or less

Terminal card

	Card name		Number of channels	of channels Maximum rated values at contacting point Voltage Current		Voltage between terminals	Number of exclusive slots	Applicable terminal card	
	72101A	General-purpose	10 channels; 3 wires/channel	100V	0.5A	200V	1	72109A/B/D/E	
	72101B	General-purpose	10 channels; 4 wires/channel	40V	1A	200V		72109A/D/E	
	72101C	Long-life high-voltage	10	300V	1A	500V	2		
Multiplexer card	72101E	High insulation resistance	10 channels; 3 wires/channel	100V	200mA	200V	1		
Caru	72101G	High voltage	10 channels; 2 wires/channel	1kV	5mA	1kV	0	Unified structure with switch card	
	72101H	Long-life high-voltage	20 channels; 3 wires/channel	300V	2A	500V	2	with Switch Card	
	72101J	Minute electric current	10 channels; 2 wires/channel	200V	1A	400V	2		
	72102A	General-purpose	10 channels; 2 wires/channel	100V	0.5A	200V	1	72109A/D/E	
Actuator	72102C	Long-life high-voltage	To channels; 2 wires/channel	300V	1A	500V	2	Unified structure	
	72102H	Long-life high-voltage	20 channels; 2 wires/channel	300V	2A	500V	2	with switch card	
	72103A	General-purpose		100V	0.5A	200V	_	72109A/D/E	
Matrix 7	72103B	General-purpose	4×4 channels; 4 wires/channel	40V	1A	200V	•		
	72103C	Long-life high-voltage		300V	1A	500V	2	Unified structure with switch card	
Transfer	72106A	General-purpose	10 channels; transfer contact point	30V	100mA	100V	1	72109A/D/E	

About ADC Corporation

ADC Corporation is a manufacturer specialized in testing and measurement that became an independent firm by management buyout from Advantest in April 2003. We have developed mother technologies to measure electric and physical quantities accurately, by combining our analog measurement technologies developed for over 50 years with digital technologies, and provided general measuring instruments that support many cutting-edge technologies.

Our mission is to pursue the essence of generic measuring instruments by developing innovative measurement technologies using accumulated analog technologies so as to contribute to the development of cutting-edge technologies continuously. In keeping with the mission, we will be growing with our customers by quick decision-making and flexible customer support.

■ Corporate Profile

Company name

House mark

Established on

Respresentative Director and President

Capital

Head Office

Higashimatsuyama Office (R&D Center)

ADC Corporation

ADCMT.

July 1, 1971

Isamu Inaba

50 million yen

Tokyo, Japan

rortyo, dapari

Saitama, Japan

Sales support

■ Website

Our products are described in more detail on our website. The features, application examples and specifications are shown for each product, and downloading of brochures is also possible.

■ Software downloading

You can download sample programs for automation, USB driver, LabVIEW driver and sample programs from our website, when using our products as a part of automated systems.

Quality assurance

■ Measurement results are guaranteed

With highly accurate digital measuring instruments, even a minute discrepancy with the national standards could pose a problem. ADC Corporation has periodically maintained and managed the inhouse standard equipment and periodically traced the national standards.

■ Acquired ISO9001 certificate

ADC Corporation has obtained ISO9001 quality management system

certificate. Using the system, we have implemented continuous improvement activities for further enhancement of customer satisfaction.

Warranty and maintenance

■ Warranty

In order to supply highly reliable products, we prevent mixing of defective products beforehand under stringent inspection system, at the same time designing products with backup of reliability design and technical standards. The products we deliver are guaranteed for a specified period, pursuant to our in-house standards.

■ Maintenance

We have established a thorough after-sales system so that you can use your measuring instruments securely over a long period even when they failed. Furthermore, we have configured a service network in order to offer prompt services, and have strived to secure maintenance parts and hand down technologies.

ADC CORPORATION

E-mail: kcc@adcmt.com URL: http://www.adcmt.com

Head Office

Shoei Bldg, 3-6-12, Kyobashi, Chuou-ku, Tokyo 104-0031, Japan Phone: +81-3-6272-4433 Fax: +81-3-6272-4437

Higashimatsuyama Office (R&D Center)

77-1, Miyako Namegawa-machi, Hiki-gun, Saitama 355-0812, Japan

Phone: +81-493-56-4433 Fax: +81-493-56-4281